
CS144, Stanford University

Congestion Control
AIMD, queueing, TCP variants

1

CS144, Stanford University

Congestion Control Motivation

2

San Francisco Boston

CS144, Stanford University

Congestion Control Motivation

3

San Francisco Boston

CS144, Stanford University

Congestion Control Motivation

4

San Francisco Boston

Congestion control: limit outstanding data so it does
not congest network, improves overall performance

CS144, Stanford University

TCP and AIMD

• TCP uses additive-increase, multiplicative decrease (AIMD)
▶ Maintains a congestion window, an estimate of how many unacknowledged

segments can be sent
▶ Increases the congestion window by one segment every RTT
▶ Halves the congestion window (or more) on detecting a loss

• A bit of history on why (the Internet collapsed)

• Explanation of AIMD dynamics with packet switching

• Explanation of how TCP achieves and implements AIMD

5

CS144, Stanford University

TCP History

• 1974: 3-way handshake

• 1978: TCP and IP split into TCP/IP

• 1983: January 1, ARPAnet switches to TCP/IP

• 1986: Internet begins to suffer congestion collapse

• 1987-8: Van Jacobson fixes TCP, publishes seminal TCP paper (Tahoe)

6

CS144, Stanford University

TCP Pre-Tahoe
(very similar to your your lab 2)

• Endpoint has the flow control window size

• On connection establishment, send a full window of packets

• Start a retransmit timer for each packet

• Problem: what if window is much larger than what network can support?
▶ “In October of ’86, the Internet had the first of what became a series of

‘congestion collapses’. During this period, the data throughput from LBL to UC
Berkeley (sites separated by 400 yards and two IMP hops) dropped from 32
Kbps to 40 bps.”

7

CS144, Stanford University

TCP in 1986

8

Send Time (sec)

Pa
ck

et
 S

eq
ue

nc
e

N
um

be
r

(k
B)

Figure from “Congestion Avoidance and Control”, Van
Jacobson and Karels. Used with permission.

CS144, Stanford University

AIMD

• Additive Increase, Multiplicative Decrease

• On each RTT, increase send window by 1 maximum-sized segment (MSS)

• If a packet is lost, halve the congestion window

• Results in a “sawtooth” window size

9 time

window  
size

CS144, Stanford University

Congestion Control

• Service Provider: maximize link utilization

• User: I get my fair share

• Want network to converge to a state where everyone gets 1/N

• Avoid congestion collapse

10

CS144, Stanford University

Chiu Jain Plot

11

Flow A rate (bps)

F
lo

w
 B

 ra
te

 (b
p

s
)

CS144, Stanford University

Chiu Jain Plot

12

Flow A rate (bps)

F
lo

w
 B

 ra
te

 (b
p

s
)

Fair

A=B

CS144, Stanford University

Chiu Jain Plot

13

Flow A rate (bps)

F
lo

w
 B

 ra
te

 (b
p

s
)

Fair

A=B

Efficient

A+B=C

CS144, Stanford University

Chiu Jain Plot

14

Flow A rate (bps)

F
lo

w
 B

 ra
te

 (b
p

s
)

Fair

A=B

Efficient

A+B=C

overload

underload

CS144, Stanford University

Chiu Jain Plot

15

Flow A rate (bps)

F
lo

w
 B

 ra
te

 (b
p

s
)

Fair

A=B

Efficient

A+B=C

overload

underload

CS144, Stanford University

Chiu Jain Plot

16

Flow A rate (bps)

F
lo

w
 B

 ra
te

 (b
p

s
)

Fair

A=B

Efficient

A+B=C

overload

underload

t1

t2

t3

t4

t5

t6

CS144, Stanford University

Video!

17

http://guido.appenzeller.net/anims/

CS144, Stanford University

• In case of a bottleneck link, sender receives acks properly spaced in time

Self-Clocking

18

sender receiver

CS144, Stanford University

Congestion Window Size

19

San Francisco Boston

Optimal congestion window size is the bandwidth-delay product

CS144, Stanford University

So How Do You Implement It?

20

CS144, Stanford University

Three Questions

• When should you send new data?

• When should you send data retransmissions?

• When should you send acknowledgments?

21

CS144, Stanford University

Three Questions

• When should you send new data?

• When should you send data retransmissions?

• When should you send acknowledgments?

22

CS144, Stanford University

Congestion Window (TCP Tahoe)

• Flow control window is only about endpoint

• Have TCP estimate a congestion window for the network

• Sender window = min(flow window, congestion window)

• Separate congestion control into two states
▶ Slow start: on connection startup or packet timeout
▶ Congestion avoidance: steady operation

23

CS144, Stanford University

Slow Start Benefits

• Slow start
▶ Window starts at Maximum

Segment Size (MSS)
▶ Increase window by MSS for

each acknowledged packet

• Exponentially grow
congestion window to sense
network capacity

• “Slow” compared to prior
approach

24

Pa
ck

et
 S

eq
ue

nc
e

N
um

be
r

(k
B)

Send Time (sec)

Figure from “Congestion Avoidance and Control”, Van
Jacobson and Karels. Used with permission.

CS144, Stanford University

Congestion Avoidance

• Slow start
▶ Increase congestion window by MSS for each acknowledgment
▶ Exponential increase

• Congestion avoidance
▶ Increase by MSS2/congestion window for each acknowledgment
▶ Behavior: increase by MSS each round trip time
▶ Linear (additive) increase

25

CS144, Stanford University

State Transitions

• Two goals
▶ Use slow start to quickly find network capacity
▶ When close to capacity, use congestion avoidance to very carefully probe

• Three signals
▶ Increasing acknowledgments: transfer is going well
▶ Duplicate acknowledgments: something was lost/delayed
▶ Timeout: something is very wrong

26

CS144, Stanford University

TCP Tahoe FSM

27

Slow
Start

Congestion
Avoidance

cwnd > ssthresh
-

timeout or triple dup ack
cwnd=1, ssthresh=cwnd/2

ack

cwnd+= MSS2

cwnd

ack
cwnd+=MSS

CS144, Stanford University

TCP Tahoe Behavior

28

time

window
size

timeout

duplicate acks

timeout

ssthresh

CS144, Stanford University

`

• Fast retransmit (Tahoe+Reno), fast recovery (Reno)
▶ NB: Videos incorrect attribute mechanisms to TCP versions; these factoids are not

important, it is important you understand the mechanisms and why they help

• Multiple losses in one window only decrease once (NewReno)

29

